Probability-based pilot allocation for MIMO relay Distributed compressed sensing channel estimation

نویسندگان

  • Abbas Akbarpour-Kasgari
  • Mehrdad Ardebilipour
چکیده

Multiple-Input Multiple-Output (MIMO) relay communication systems are used as an efficient system in spectral efficiency and power allocation view point. In these systems, some of the facilities need channel state information (CSI). Besides, new estimation methods based on compressed sensing (CS) are well known for their spectral efficiency and accuracy. In this paper, we have used a Distributed CS-based channel estimation method to improve the accuracy and spectral efficiency of channel estimation for MIMO-Orthogonal Frequency Division Multiplexing relay network. Specifically, using Least Squares (LS) estimation increases the accuracy of well-known Compressive Sampling Matching Pursuit (CoSaMP) algorithm and proposes Block-verified CoSaMP (B-vCoSaMP). To improve the accuracy of estimation, we are encountered with a combinatorial optimization which is dealt with probability-based approaches in this paper. More particularly, three probability-based optimization methods have been proposed to optimize the mutual coherence of measurement matrix called Sequential Cross-Entropy (SCE), Extended Estimating of Distribution Algorithm (EEDA), and Parallel Cross-Entropy (PCE). All these methods are based on sampling from a Probability Density Function (PDF) which is updated in each iteration using elite samples of the population. The simulation results represent the accuracy and speed of the proposed methods, and the comparison is expressed as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Compressive Sensing Based Doubly Selective Channel Estimation for Large-Scale MIMO Systems

Doubly selective (DS) channel estimation in largescale multiple-input multiple-output (MIMO) systems is a challenging problem due to the requirement of unaffordable pilot overheads and prohibitive complexity. In this paper, we propose a novel distributed compressive sensing (DCS) based channel estimation scheme to solve this problem. In the scheme, we introduce the basis expansion model (BEM) t...

متن کامل

Sparse Recovery Algorithms for Pilot Assisted MIMO OFDM Channel Estimation

In this letter, the sparse recovery algorithm orthogonal matching pursuit (OMP) and subspace pursuit (SP) are applied for MIMO OFDM channel estimation. A new algorithm named SOMP is proposed, which combines the advantage of OMP and SP. Simulation results based on 3GPP spatial channel model (SCM) demonstrate that SOMP performs better than OMP and SP in terms of normalized mean square error (NMSE...

متن کامل

Applying Channel Estimation in MIMO Network Coding protocol

in this paper, a combination of MIMO and network coding, based on MINEC protocol, is used for improving the performance of the relay networks in fading environments. We have introduced the concept of channel estimation into the proposed three-node relay network. When the receiver is having no knowledge of the channel, then the Rayleigh fading channel has to be estimated using some technique, as...

متن کامل

Power Allocation and Measurement Matrix Design for Block CS-Based Distributed MIMO Radars

—Multiple-input multiple-output (MIMO) radars offer higher resolution, better target detection, and more accurate target parameter estimation. Due to the sparsity of the targets in space-velocity domain, we can exploit Compressive Sensing (CS) to improve the performance of MIMO radars when the sampling rate is much less than the Nyquist rate. In distributed MIMO radars, block CS methods can be ...

متن کامل

Weighted Compressive Sensing Based Uplink Channel Estimation for TDD Massive MIMO Systems

In this paper, the channel estimation problem for the uplink massive multi-input multioutput (MIMO) system is considered. Motivated by the observations that the channels in massive MIMO systems may exhibit sparsity and the channel support changes slowly over time, we propose one efficient channel estimation method under the framework of compressive sensing. By exploiting the channel impulse res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018